Lesson 1
Introduction to Assembly Language

1.1. Basic Computer Architecture

Address, Data, and Control Buses

A computer system comprises of a processor, memory, and I/O devices. I/O is used for interfacing with the external world, while memory is the processor’s internal world. Processor is the core in this picture and is responsible for performing operations. The operation of a computer can be fairly described with processor and memory only. I/O will be discussed in a later part of the course. Now the whole working of the computer is performing an operation by the processor on data, which resides in memory.

The scenario that the processor executes operations and the memory contains data elements requires a mechanism for the processor to read that data from the memory. “That data” in the previous sentence much be rigorously explained to the memory which is a dumb device. Just like a postman, who must be told the precise address on the letter, to inform him where the destination is located. Another significant point is that if we only want to read the data and not write it, then there must be a mechanism to inform the memory that we are interested in reading data and not writing it. Key points in the above discussion are:

· There must be a mechanism to inform memory that we want to do the read operation

· There must be a mechanism to inform memory that we want to read precisely which element

· There must be a mechanism to transfer that data element from memory to processor

The group of bits that the processor uses to inform the memory about which element to read or write is collectively known as the address bus. Another important bus called the data bus is used to move the data from the memory to the processor in a read operation and from the processor to the memory in a write operation. The third group consists of miscellaneous independent lines used for control purposes. For example, one line of the bus is used to inform the memory about whether to do the read operation or the write operation. These lines are collectively known as the control bus.

These three buses are the eyes, nose, and ears of the processor. It uses them in a synchronized manner to perform a meaningful operation. Although the programmer specifies the meaningful operation, but to fulfill it the processor needs the collaboration of other units and peripherals. And that collaboration is made available using the three buses. This is the very basic description of a computer and it can be extended on the same lines to I/O but we are leaving it out just for simplicity for the moment.

The address bus is unidirectional and address always travels from processor to memory. This is because memory is a dumb device and cannot predict which element the processor at a particular instant of time needs. Data moves from both, processor to memory and memory to processor, so the data bus is bidirectional. Control bus is special and relatively complex, because different lines comprising it behave differently. Some take information from the processor to a peripheral and some take information from the peripheral to the processor. There can be certain events outside the processor that are of its interest. To bring information about these events the data bus cannot be used as it is owned by the processor and will only be used when the processor grants permission to use it. Therefore certain processors provide control lines to bring such information to processor’s notice in the control bus. Knowing these signals in detail is unnecessary but the general idea of the control bus must be conceived in full.


[image: image1]
We take an example to explain the collaboration of the processor and memory using the address, control, and data buses. Consider that you want your uneducated servant to bring a book from the shelf. You order him to bring the fifth book from top of the shelf. All the data movement operations are hidden in this one sentence. Such a simple everyday phenomenon seen from this perspective explains the seemingly complex working of the three buses. We told the servant to “bring a book” and the one which is “fifth from top,” precise location even for the servant who is much more intelligent then our dumb memory. The dumb servant follows the steps one by one and the book is in your hand as a result. If however you just asked him for a book or you named the book, your uneducated servant will stand there gazing at you and the book will never come in your hand. 

Even in this simplest of all examples, mathematics is there, “fifth from top.” Without a number the servant would not be able to locate the book. He is unable to understand your will. Then you tell him to put it with the seventh book on the right shelf. Precision is involved and only numbers are precise in this world. One will always be one and two will always be two. So we tell in the form of a number on the address bus which cell is needed out of say the 2000 cells in the whole memory.

A binary number is generated on the address bus, fifth, seventh, eighth, tenth; the cell which is needed. So the cell number is placed on the address bus. A memory cell is an n-bit location to store data, normally 8-bit also called a byte. The number of bits in a cell is called the cell width. The two dimensions, cell width and number of cells, define the memory completely just like the width and depth of a well defines it completely. 200 feet deep by 15 feet wide and the well is completely described. Similarly for memory we define two dimensions. The first dimension defines how many parallel bits are there in a single memory cell. The memory is called 8-bit or 16-bit for this reason and this is also the word size of the memory. This need not match the size of a processor word which has other parameters to define it. In general the memory cell cannot be wider than the width of the data bus. Best and simplest operation requires the same size of data bus and memory cell width.

As we previously discussed that the control bus carries the intent of the processor that it wants to read or to write. Memory changes its behavior in response to this signal from the processor. It defines the direction of data flow. If processor wants to read but memory wants to write, there will be no communication or useful flow of information. Both must be synchronized, like a speaker speaks and the listener listens. If both speak simultaneously or both listen there will be no communication. This precise synchronization between the processor and the memory is the responsibility of the control bus.

Control bus is only the mechanism. The responsibility of sending the appropriate signals on the control bus to the memory is of the processor. Since the memory never wants to listen or to speak of itself. Then why is the control bus bidirectional. Again we take the same example of the servant and the book further to elaborate this situation. Consider that the servant went to fetch the book just to find that the drawing room door is locked. Now the servant can wait there indefinitely keeping us in surprise or come back and inform us about the situation so that we can act accordingly. The servant even though he was obedient was unable to fulfill our orders so in all his obedience, he came back to inform us about the problem. Synchronization is still important, as a result of our orders either we got the desired cell or we came to know that the memory is locked for the moment. Such information cannot be transferred via the address or the data bus. For such situations when peripherals want to talk to the processor when the processor wasn’t expecting them to speak, special lines in the control bus are used. The information in such signals is usually to indicate the incapability of the peripheral to do something for the moment. For these reasons the control bus is a bidirectional bus and can carry information from processor to memory as well as from memory to processor.

1.2. Registers

The basic purpose of a computer is to perform operations, and operations need operands. Operands are the data on which we want to perform a certain operation. Consider the addition operation; it involves adding two numbers to get their sum. We can have precisely one address on the address bus and consequently precisely one element on the data bus. At the very same instant the second operand cannot be brought inside the processor. As soon as the second is selected, the first operand is no longer there. For this reason there are temporary storage places inside the processor called registers. Now one operand can be read in a register and added into the other which is read directly from the memory. Both are made accessible at one instance of time, one from inside the processor and one from outside on the data bus. The result can be written to at a distinct location as the operation has completed and we can access a different memory cell. Sometimes we hold both operands in registers for the sake of efficiency as what we can do inside the processor is undoubtedly faster than if we have to go outside and bring the second operand. 

Registers are like a scratch pad ram inside the processor and their operation is very much like normal memory cells. They have precise locations and remember what is placed inside them. They are used when we need more than one data element inside the processor at one time. The concept of registers will be further elaborated as we progress into writing our first program.

Memory is a limited resource but the number of memory cells is large. Registers are relatively very small in number, and are therefore a very scarce and precious resource. Registers are more than one in number, so we have to precisely identify or name them. Some manufacturers number their registers like r0, r1, r2, others name them like A, B, C, D. Naming is useful since the registers are few in number. This is called the nomenclature of the particular architecture. Still other manufacturers name their registers according to their function like X stands for an index register. This also informs us that there are special functions of registers as well, some of which are closely associated to the particular architecture. For example index registers do not hold data instead they are used to hold the address of data. There are other functions as well and the whole spectrum of register functionalities is quite large. However most of the details will become clear as the registers of the Intel architecture are discussed in detail. 

PROCESSOR





MEMORY





PERIPHERALS








